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Abstract
The high replication cost of Byzantine fault-tolerance (BFT)
methods has been a major barrier to their widespread adop-
tion in commercial distributed applications. We present ZZ,
a new approach that reduces the replication cost of BFT ser-
vices from 2f +1 to practically f +1. The key insight in ZZ
is to use f + 1 execution replicas in the normal case and to
activate additional replicas only upon failures. In data cen-
ters where multiple applications share a physical server, ZZ
reduces the aggregate number of execution replicas running
in the data center, improving throughput and response times.
ZZ relies on virtualization—a technology already employed
in modern data centers—for fast replica activation upon fail-
ures, and enables newly activated replicas to immediately
begin processing requests by fetching state on-demand. A
prototype implementation of ZZ using the BASE library and
Xen shows that, when compared to a system with 2f + 1
replicas, our approach yields lower response times and up to
33% higher throughput in a prototype data center with four
BFT web applications. We also show that ZZ can handle si-
multaneous failures and achieve sub-second recovery.

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability—Fault-tolerance

General Terms Reliability, Design, Experimentation

Keywords Byzantine Fault Tolerance, Virtualization, Data
Centers

1. Introduction
Today’s enterprises rely on data centers to run their crit-
ical business applications. As users have become increas-
ingly dependent on online services, malfunctions have be-
come highly problematic, resulting in financial losses, nega-
tive publicity, or frustrated users. Consequently, maintaining
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high availability of critical services is a pressing need as well
as a challenge in modern data centers.

Byzantine fault tolerance (BFT) is a powerful replication
approach for constructing highly-available services that can
tolerate arbitrary (Byzantine) faults. This approach requires
replicas to agree upon the order of incoming requests and
process them in the agreed upon order. Despite numerous ef-
forts to improve the performance or fault scalability of BFT
systems [Abd-El-Malek 2005, Castro 1999, Cowling 2006,
Guerraoui 2010, Kotla 2007, Vandiver 2007], existing ap-
proaches remain expensive, requiring at least 2f+1 replicas
to execute each request in order to tolerate f faults [Kotla
2007, Yin 2003]. This high replication cost has been a signif-
icant barrier to their adoption—to the best of our knowledge,
no commercial data center application uses BFT techniques
today, despite the wealth of research in this area.

Many recent efforts have focused on optimizing the
agreement protocol used by BFT replicas [Cowling 2006,
Kotla 2007]; consequently, today’s state-of-the-art protocols
can scale to a throughput of 80,000 requests/s and incur
overheads of less than 10 µs per request for reaching agree-
ment [Kotla 2007]. In contrast, request execution overheads
for typical applications such as web servers and databases
[Vandiver 2007] can be in the order of milliseconds or tens
of milliseconds—three orders of magnitude higher than the
agreement cost. Since request executions dominate the total
cost of processing requests in BFT services, the hardware
(server) capacity needed for request executions will far ex-
ceed that for running the agreement protocol. Hence, we
argue that the total cost of a BFT service can be truly re-
duced only when the total overhead of request executions,
rather than the cost to reach agreement, is somehow reduced.

In this paper we present ZZ, a new approach that reduces
the cost of replication as well as that of request executions in
BFT systems. Our approach enables general BFT services to
be constructed with a replication cost close to f + 1, halving
the 2f + 1 or higher cost incurred by state-of-the-art ap-
proaches [Yin 2003]. ZZ targets shared hosting data center
environments where replicas from multiple applications can
share a physical server. The key insight in ZZ1 is to run only
f + 1 execution replicas per application in the graceful case

1 Denotes sleeping replicas; from the sleeping connotation of the term “zz..”



where there are no faults, and to activate additional sleeping
replicas only upon failures. By multiplexing fewer replicas
onto a given set of shared servers, our approach is able to
provide more server capacity to each replica, and thereby
achieve higher throughput and lower response times for re-
quest executions. In the worst case where all applications
experience simultaneous faults, our approach requires an ad-
ditional f replicas per application, matching the overhead of
the 2f + 1 approach. However, in the common case where
only a subset of the data center applications are experiencing
faults, our approach requires fewer replicas in total, yielding
response time and throughput benefits. Like [Yin 2003], our
system still requires 3f +1 agreement replicas; however, we
argue that the overhead imposed by agreement replicas is
small, allowing such replicas from multiple applications to
be densely packed onto physical servers.

The ability to quickly activate additional replicas upon
fault detection is central to our ZZ approach. While any
mechanism that enables fast replica activation can be em-
ployed in ZZ, in this paper, we rely upon virtualization—a
technique already employed in modern data centers—for on-
demand replica activation.

The following are our contributions. We propose a prac-
tical solution to reduce the cost of BFT to nearly f + 1 ex-
ecution replicas and define formal bounds on ZZ’s replica-
tion cost. As reducing the execution cost in ZZ comes at the
expense of potentially allowing faulty nodes to increase re-
sponse times, we analyze and bound this response time in-
flation and show that in realistic scenarios malicious applica-
tions cannot significantly reduce performance. We also im-
plement a prototype of ZZ by enhancing the BASE library
and combining it with the Xen virtual machine and the ZFS
file system. ZZ leverages virtualization for fast replica acti-
vation and optimizes the recovery protocol to allow newly-
activated replicas to immediately begin processing requests
through an amortized state transfer strategy. We evaluate our
prototype using a BFT web server and ZZ-based NFS file
server. Experimental results demonstrate that in a prototype
data center running four BFT web servers, ZZ’s use of only
f + 1 execution replicas in the fault-free case yields re-
sponse time and throughput improvements of up to 66%, and
still enables rapid recovery after simultaneous failures occur.
Overall, our evaluation emphasizes the importance of mini-
mizing the execution cost of real BFT services and demon-
strates how ZZ provides strong fault tolerance guarantees at
significantly lower cost compared to existing systems.

2. State-of-the-art vs. the Art of ZZ
In this section, we compare ZZ to state-of-the-art approaches
and describe how we reduce the execution cost to f + 1.

2.1 From 3f+1 to 2f+1
In the traditional PBFT approach [Castro 1999], during
graceful execution a client sends a request Q to the repli-
cas. The 3f + 1 (or more) replicas agree upon the sequence
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Table 1. ZZ versus existing BFT approaches. Here, f is the number
of allowed faults, b is the batch size, E is execution cost, µ is the
cost of a MAC operation, and r � 1 is a variable formally defined
in §4.3.3. All numbers are for periods when there are no faults and
the network is well-behaved.

number corresponding to Q, execute it in that order, and
send responses back to the client. When the client receives
f + 1 valid and matching responses from different repli-
cas, it knows that at least one correct replica executed Q
in the correct order. Figure 1(a) illustrates how the princi-
ple of separating agreement from execution can reduce the
number of execution replicas required to tolerate up to f
faults from 3f + 1 to 2f + 1. In this separation approach
[Yin 2003], the client sends Q to a primary in the agreement
cluster consisting of 3f + 1 lightweight machines that agree
upon the sequence number i corresponding to Q and send
[Q, i] to the execution cluster consisting of 2f + 1 replicas
that store and process application state. When the agreement
cluster receives f + 1 matching responses from the execu-
tion cluster, it forwards the response to the client knowing
that at least one correct execution replica executed Q in the
correct order. For simplicity of exposition, we have omitted
cryptographic operations above.

2.2 Circumventing 2f+1
The 2f + 1 replication cost is believed necessary [Abd-El-
Malek 2005, Cowling 2006, Kotla 2007] for BFT systems.
However, more than a decade ago, Castro and Liskov con-
cluded their original paper on PBFT [Castro 1999] saying
“it is possible to reduce the number of copies of the state to
f + 1 but the details remain to be worked out”. In this paper,
we work out those details.

Table 1 compares the replication cost and performance
characteristics of several BFT State Machine Replication
(BFT-SMR) approaches to ZZ. Quorum based approaches
[Abd-El-Malek 2005, Cowling 2006] lead to a similar com-
parison. All listed numbers are for gracious execution, i.e.,
when there are no faults and the network is well-behaved.
Note that all approaches require at least 3f + 1 replicas
in order to tolerate up to f independent Byzantine failures,
consistent with classical results that place a lower bound of
3f + 1 replicas for a safe Byzantine consensus protocol that
is live under weak synchrony assumptions [Dwork 1988].
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Figure 1. (a) The PBFT approach versus the separation of agreement from execution. (b-c) Various scenarios in the ZZ system for f = 2
faults. Request 22 results in matching responses γ, but the mismatch in request 23 initiates new virtual machine replicas on demand.

In contrast to common practice, we do not measure repli-
cation cost in terms of the total number of physical machines
as we assume a virtualized environment that is common in
many data centers today. Virtualization allows resources to
be allocated to a replica at a granularity finer than an en-
tire physical machine. Virtualization itself is useful in multi-
plexed environments, where a data center owner hosts many
services simultaneously for better management of limited
available resources. Note that virtualization helps all BFT
approaches, not just ZZ, in multiplexed environments.

Cost: Our position is that execution, not agreement, is
the dominant provisioning cost for most realistic data center
services that can benefit from the high assurance provided by
BFT. To put this in perspective, consider that state-of-the-art
BFT approaches such as Zyzzyva show a peak throughput
of over 80K requests/second for a toy application consisting
of null requests, which is almost three orders of magnitude
more than the achievable throughput for a database service
on comparable hardware [Vandiver 2007]. Thus in realistic
systems, the primary cost is that of hardware performing ap-
plication execution, not agreement. ZZ nearly halves the data
center provisioning cost by reducing the number of replicas
actively executing requests (Table 1 row 2); however, this
benefit can only be realized when BFT is used in a data
center running multiple applications so that sleeping repli-
cas can be distributed across a pool of servers.

Throughput: ZZ can achieve a higher peak through-
put compared to state-of-the-art approaches when execu-
tion dominates request processing cost and resources are
constrained. For a fair comparison, assume that all ap-
proaches are provisioned with the same total amount of
resources. Then, the peak throughput of each approach is
bounded by the minimum of its best-case execution through-
put and its best-case agreement throughput (row 4). Agree-
ment throughput is primarily limited by the overhead µ of a
MAC operation and can be improved significantly through
batching. However, batching is immaterial to the overall
throughput when execution is the bottleneck (row 5).

The comparison above is for performance during periods
when there are no faults and the network is well-behaved.
In adverse conditions, the throughput and latency of all ap-
proaches can degrade significantly and a thorough com-

parison is nontrivial and difficult to characterize concisely
[Clement 2009, Singh 2008].

When failures occur, ZZ incurs a higher latency to exe-
cute some requests until its failure recovery protocol is com-
plete. Our experiments suggest that this additional overhead
is modest and is small compared to typical WAN delays.
In a world where failures are the uncommon case, ZZ of-
fers valuable savings in replication cost or, equivalently, im-
provement in throughput under limited resources.

ZZ is not a new “BFT protocol” as that term is typically
used to refer to the agreement protocol; instead, ZZ is an
execution approach that can be interfaced with existing BFT-
SMR agreement protocols. Our prototype uses the BASE
implementation of the PBFT protocol as it was the most
mature and readily available BFT implementation at the time
of writing. The choice was also motivated by our premise
that we do not seek to optimize agreement throughput, but to
demonstrate the feasibility of ZZ’s execution approach with
a reasonable agreement protocol. Admittedly, it was easier to
work out the details of augmenting PBFT with ZZ compared
to more sophisticated agreement protocols.

3. ZZ design
3.1 System and Fault Model
We assume a Byzantine failure model where faulty repli-
cas or clients may behave arbitrarily. There are two kinds
of replicas: 1) agreement replicas that assign an order to
client requests and 2) execution replicas that maintain appli-
cation state and execute client requests. Replicas fail inde-
pendently, and we assume an upper bound g on the number
of faulty agreement replicas and a bound f on the number of
faulty execution replicas in a given window of vulnerability.
We initially assume an infinite window of vulnerability, and
relax this assumption in Section 4.3.4. An adversary may
coordinate the actions of faulty nodes in an arbitrary man-
ner. However, the adversary can not subvert standard cryp-
tographic assumptions about collision-resistant hashes, en-
cryption, and digital signatures.

ZZ uses the state machine replication model to implement
a BFT service. Replicas agree on an ordering of incoming
requests and each execution replica executes all requests in
the same order. Like all previous SMR based BFT systems,



we assume that either the service is deterministic or the non-
deterministic operations in the service can be transformed to
deterministic ones via the agreement protocol [Castro 1999].

Our system ensures safety in an asynchronous network
that can drop, delay, corrupt, or reorder messages. Liveness
is guaranteed only during periods of synchrony when there
is a finite but possibly unknown bound on message delivery
time. The above system model and assumptions are similar
to those assumed by many existing BFT systems [Castro
1999, Kotla 2007, Rodrigues 2001, Yin 2003].

Virtualization: ZZ assumes that replicas are run inside
virtual machines. As a result, it is possible to run multi-
ple replicas on a single physical server. To maintain the
fault independence requirement, no more than one agree-
ment replica and one execution replica of each service can
be hosted on a single physical server.

ZZ assumes that the hypervisor may be Byzantine. Be-
cause of the placement assumption above, a malicious hy-
pervisor is equivalent to a single fault in each service hosted
on the physical machine. As before, we assume a bound f
on the number of faulty hypervisors within a window of vul-
nerability. We note that even today sufficient hypervisor di-
versity (e.g., Xen, KVM, VMWare, Hyper-V) is available to
justify this assumption.

3.2 ZZ Design Overview
ZZ reduces the replication cost of BFT from 2f+1 to nearly
f + 1 based on two simple insights. First, if a system is
designed to be correct in an asynchronous environment, it
must be correct even if some replicas are out of date. Second,
during fault-free periods, a system designed to be correct
despite f Byzantine faults must be unaffected if up to f
replicas are turned off. ZZ leverages the second insight to
turn off f replicas during fault-free periods requiring just
f+1 replicas to actively execute requests. When faults occur,
ZZ leverages the first insight and behaves exactly as if the f
standby replicas were slow but correct replicas.

If the f + 1 active execution replicas return matching
responses for an ordered request, at least one of these re-
sponses, and by implication all of the responses, must be
correct. The problematic case is when the f + 1 responses
do not match. In this case, ZZ starts up additional virtual ma-
chines hosting standby replicas. For example, when f = 1,
upon detecting a fault, ZZ starts up a third replica that exe-
cutes the most recent request. Since at most one replica can
be faulty, the third response must match one of the other
two responses, and ZZ returns this matching response to the
client. Figure 1(b-c) illustrates the high-level control flow
for f = 2. Request 22 is executed successfully generating
the response γ, but request 23 results in a mismatch wak-
ing up the two standby VM replicas. The fault is resolved by
comparing the outputs of all 2f + 1 replicas, revealing α as
the correct response.

The above design would be impractical without a quick
replica wake-up mechanism. Virtualization provides this
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Figure 2. An example server setup with three f = 1 fault tolerant
applications, A, B, and C; only execution replicas are shown.

mechanism by maintaining additional replicas in a “dor-
mant” state. Figure 2 illustrates how ZZ can store additional
replicas both in memory as prespawned but paused VMs and
hibernated to disk. Paused VMs resume within milliseconds
but consume memory resources. Hibernated replicas require
only storage resources, but can incur greater recovery times.

3.3 Design Challenges
The high-level approach described above raises several fur-
ther challenges. First, how does a restored replica obtain the
necessary application state required to execute the current
request? In traditional BFT systems, each replica maintains
an independent copy of the entire application state. Periodi-
cally, all replicas create application checkpoints that can be
used to bring up to speed any replicas which become out of
date. However, a restored ZZ replica may not have any previ-
ous version of application state. It must be able to verify that
the state it obtains is correct even though there may be only
one correct execution replica (and f faulty ones), e.g., when
f = 1, the third replica must be able to determine which of
the two existing replicas possesses the correct state.

Second, transferring the entire application state can take
an unacceptably long time. In existing BFT systems, a re-
covering replica may generate incorrect messages until it ob-
tains a stable checkpoint. This inconsistent behavior during
checkpoint transfer is treated like a fault and does not impede
progress of request execution if there is a quorum of f + 1
correct execution replicas with a current copy of the applica-
tion state. However, when a ZZ replica recovers, there may
exist just one correct execution replica with a current copy of
the application state. The traditional state transfer approach
can stall request execution in ZZ until f recovering replicas
have obtained a stable checkpoint.

Third, ZZ’s replication cost must be robust to faulty
replica or client behavior. A faulty client must not be able to
trigger recovery of standby replicas. A compromised replica
must not be able to trigger additional recoveries if there are
at least f + 1 correct and active replicas. If these conditions
are not met, the replication cost savings would vanish and
system performance could be worse than a traditional BFT
system using 2f + 1 replicas.

4. ZZ Protocol
In this section we briefly describe the separated protocol
from [Yin 2003], and present ZZ’s modifications to support
switching from f+1 to 2f+1 execution replicas after faults
are detected.



4.1 Graceful Execution
Client Request & Agreement: In Figure 3 step 1, a client c
sends a requestQ to the agreement cluster to submit an oper-
ation o with a timestamp t. The timestamps ensure exactly-
once semantics for execution of client requests, and a faulty
client’s behavior does not affect other clients’ requests.

Upon receiving a client requestQ, the agreement replicas
will execute the standard three phase BFT agreement proto-
col [Castro 1999] in order to assign a sequence number n
to the request. When an agreement replica j learns of the
sequence number n committed to Q, it sends a commit mes-
sage C to all execution replicas (Fig. 3 step 2).

Execution: An execution replica i executes a request Q
when it gathers a commit certificate {Ci}, i ∈ A|2g + 1, i.e.
a set of 2g+1 valid and matching commit messages from the
agreement cluster, and it has executed all other requests with
a lower sequence number. Each execution node produces a
reply R which it sends to the client and an execution report
message ER sent to all agreement nodes (Fig. 3 steps 3-4).

In the normal case, the client receives a response certifi-
cate {Ri}, i ∈ E|f+1—matching reply messages from f+1
execution nodes. Since at most f execution replicas can be
faulty, a client receiving a response certificate knows that
the response is correct. If a client does not obtain matching
replies, it resends its request to the agreement cluster. If an
agreement node receives a retransmitted request for which it
has received f+1 matching execution report messages, then
it can send a reply affirmation, RA to the client (Fig. 3 step 5).
If a client receives g+1 such messages containing a response
digest, R, matching one of the replies already received, then
the client can accept that reply as valid. This “backup” so-
lution is used by ZZ to prevent unnecessary wakeups where
a partially faulty execution node may reply to the agreement
cluster, but not to the client. If the agreement cluster cannot
produce an affirmation for the client, then additional nodes
must be started as described in subsequent sections.

4.2 Dealing with Faults
4.2.1 Checkpointing
Checkpoints are used so that newly started execution repli-
cas can obtain a recent copy of the application state and
so that replicas can periodically garbage collect their logs.
The checkpoints are constructed at predetermined request
sequence numbers, e.g., when it is exactly divisible by 1024.

With at least 2f+1 execution replicas in other BFT-SMR
systems, a recovering replica is guaranteed to get at least
f + 1 valid and matching checkpoint messages from other
execution replicas, allowing checkpoint creation and valida-
tion to be done exclusively within the execution cluster [Yin
2003]. However, ZZ runs only f + 1 execution replicas in
the normal case, and thus a new replica may not be able to
tell which of the checkpoints it is provided are correct.

To address this problem, ZZ’s execution cluster must co-
ordinate with the agreement cluster during checkpoint cre-
ation. ZZ execution nodes create checkpoints of applica-
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Figure 3. The normal agreement and execution protocol in ZZ
proceeds through steps 1-4. Step 5 is needed only after a fault.
Checkpoints (step 6) are created on a periodic basis. The notation
〈LABEL, X〉 denotes the message of type LABEL with parameters
X . We indicate the digest of parameter Y as Y .

tion state and their reply log, then assemble a proof of their
checkpoint, CP, and send it to all of the execution and agree-
ment nodes (Fig. 3 step 6). Informing the agreement nodes
of the checkpoint digest allows them to assist recovering ex-
ecution replicas in verifying the checkpoint data they obtain
from potentially faulty nodes.

As in most BFT-SMR systems, ZZ uses a copy-on-write
technique to preserve the state of each object when check-
points must be made. All correct execution replicas will save
a copy of each object as well as a cryptographic digest of the
object’s contents. Digests only need to be computed for ob-
jects modified since the last checkpoint; this can be done at
the time of checkpoint creation, or proactively after an object
is modified in order to decrease the checkpointing latency.

A checkpoint certificate {CPi}, i ∈ E|f + 1 is a set of
f + 1 CP messages with matching digests. When an execu-
tion replica receives a checkpoint certificate with a sequence
number n, it considers the checkpoint stable and discards
earlier checkpoints and request commit certificates with
lower sequence numbers that it received from the agreement
cluster. Likewise, the agreement nodes use these checkpoint
certificates to determine when they can garbage collect mes-
sages in their communication logs with the execution cluster.

Newly awoken replicas in ZZ may not yet have the full
application state at checkpoint time, but this does not pre-
vent them from continuing to process requests, since out-of-
date replicas are permitted to skip checkpoints. ZZ’s window
of vulnerability, defined in Section 4.3.4, assumes that addi-
tional faults will not occur until all execution replicas have
obtained the full state and are able to create a complete, sta-
ble checkpoint.

4.2.2 Fault Detection
The agreement cluster is responsible for detecting faults in
the execution cluster. Agreement nodes in ZZ are capable
of detecting invalid execution or checkpoint messages; the
fault detection and recovery steps for each of these are iden-
tical, so for brevity we focus on invalid or missing execution
responses. In the normal case, an agreement replica j waits
for an execution certificate, {ERi}, i ∈ E|f + 1, from the
execution cluster. Replica j inserts this certificate into a lo-
cal log ordered by the sequence number of requests. When
j receives ER messages which do not match, or waits for
longer than a predetermined timeout, j sends a recovery re-
quest, W = 〈RECOVER, j, n〉j , to the f hypervisors control-
ling the standby execution replicas. When the hypervisor of



a sleeping execution replica receives a recovery certificate,
{Wi}, i ∈ A|g + 1, it wakes up the local execution replica.

4.2.3 Replica Recovery with Amortized State Transfer
When an execution replica k starts up, it must obtain the
most recent checkpoint of the entire application state from
existing replicas and verify that it is correct. Unfortunately,
checkpoint transfer and verification can take an unaccept-
ably long time. Worse, unlike previous BFT systems that can
leverage incremental cryptography schemes to transfer only
the objects modified since the last checkpoint, a recovering
ZZ replica has no previous checkpoints.

How does replica k begin to execute requests without any
application state? Instead of performing an expensive trans-
fer of the entire state upfront, a recovering ZZ replica fetches
and verifies the state necessary to execute each request on
demand. Replica k first fetches a log of committed requests
since the last checkpoint from the agreement cluster and a
checkpoint certificate {CPi}, i ∈ A|g + 1 from g+ 1 agree-
ment replicas. This checkpoint certificate includes digests
for each state object, allowing the replica to verify that any
state object it obtains has come from a correct replica.

After obtaining the checkpoint certificate with object di-
gests, replica k begins to execute in order the recently com-
mitted requests. Let Q be the first request that reads from
or writes to some object p since the most recent checkpoint.
To execute Q, replica k fetches p on demand from any exe-
cution replica that can provide an object consistent with p’s
digest that k learned from the certificate. Replica k contin-
ues executing requests in sequence number order fetching
new objects on demand until it obtains a stable checkpoint.

The recovery time can be optimized by only replaying
requests which cause writes to state. Note that since on-
demand transfers only fetch objects touched by requests,
they are not sufficient for k to obtain a stable checkpoint,
so the replica must also fetch the remaining state in the
background. Recovery is complete only when replica k has
obtained a stable checkpoint, although it will be able to
correctly respond to replicas as soon as it obtains the subset
of the application state needed to process the request that
triggered the fault.

4.3 System Properties
We formally define the performance, replication cost, safety
and liveness properties of ZZ. Due to space constraints we
defer complete proofs to the appendix and [Wood 2011].

4.3.1 Response Time Inflation
ZZ relies on timeouts to detect faults in execution replicas.
This opens up a potential performance vulnerability. A low
value of the timeout can trigger fault detection even when
the delays are benign and needlessly start new replicas. On
the other hand, a high value of the timeout can be exploited
by faulty replicas to degrade performance as they can delay
sending each response to the agreement cluster until just
before the timeout. The former can take away ZZ’s savings

in replication cost as it can end up running more than f + 1
(and up to 2f+1) replicas even during graceful periods. The
latter hurts performance under faults. Note that safety is not
violated in either case.

To address this problem, we suggest the following sim-
ple procedure for setting timeouts to limit response time in-
flation. Upon receiving the first response to a request com-
mitted to sequence number n, an agreement replica sets the
timeout τn to Kt1, where t1 is the response time of the
first response and K is a pre-configured variance bound. If
the agreement replica does not receive f more matching re-
sponses within τn, then it triggers a fault and wakes up f
additional replicas.

This procedure trivially bounds the response time infla-
tion of requests to a factor of K, but we can further con-
strain the performance impact by considering the response
time distribution as follows. Given p, the probability of a
replica being faulty,

THEOREM 1. Faulty replicas can inflate average response
time by a factor of: max

(
1,
∑

0≤m≤f P (m)I(m)
)

where:

P (m) =
(
f
m

)
pm(1− p)f−m

I(0) = 1, else:

I(m) = max

(
1,

K·E[MINf+1−m]
E[MAXf+1]

)
P (m) represents the probability of m simultaneous failures
and I(m) is the response time inflation that m faulty nodes
can inflict. To get the total impact of response time infla-
tion, we must sum this product for all possible values of m.
E[MINf+1−m] is the expected minimum response time for
a set of f + 1−m replicas and E[MAXf+1] is the expected
maximum response time of all f + 1 replicas, assuming all
response times are identically distributed as some distribu-
tion Ψ. The top term in I(m) follows from the rule defined
above: a faulty node can increase response time by at mostK
compared to the fastest correct replica (i.e. the replica with
the minimum response time out of f + 1 −m nodes). The
bottom term is the non-faulty case where response time is
limited by the slowest of the f + 1 replicas.

As an example, suppose K = 4, f = 3, and response
times are exponentially distributed with E[Ψ] = 2ms. Then
E[MINf+1−m] = 2

3+1−mms and E[MAXf+1] = 4.2ms. If
p = 0.1, then I = 1.0009, i.e., average response time rises
by only 0.09%. Only for p > 0.48 is the inflation greater
than 10%. Note that proactive recovery can be used to ensure
p remains small [Castro 2002] and that to achieve this worst
case bound faulty nodes must be able to predict the earliest
response time of correct replicas. In practice, correct execu-
tion replicas may sometimes violate the variance bound due
to benign execution or network delays, causing a false time-
out. These false timeouts can impact overall replication cost
as described in section 4.3.3.



4.3.2 Waking Up and Shutting Down
Since waking up nodes to respond to faults is an expen-
sive procedure, ZZ distinguishes between “blocking” and
“non-blocking” faults, and only triggers a wakeup event for
blocking faults—those which cannot be resolved without a
wakeup. Fortunately, blocking faults by definition are more
widespread in their impact, and thus can always be traced
back to a faulty execution node which can then be shutdown.

THEOREM 2. If a wakeup occurs, ZZ will be able to termi-
nate at least one faulty replica.

This theorem is proved in the appendix, and is based on the
following wake up rule.

Wakeup Rule: A wakeup happens if and only if a mis-
match report is “blocking”.

To understand the difference between blocking and non-
blocking faults, consider the response matrix where position
(i, j) indicates Ei’s response as reported by agreement node
Aj . Consider two examples where the client receives con-
flicting responses P and Q, and f = g = 1,

Non-blocking fault Blocking fault
A1A2A3A4 A1A2A3A4

E1 : Q P P P E1 : Q P P P
E2 : Q P P P E2 : Q Q Q P

In the first scenario, it is impossible to distinguish whether
only A1 is faulty or if an execution replica and A1 is faulty;
however, g+1 agreement nodes can provide a reply affirma-
tion that P is the correct response. In the second case, there
is no way to tell whether Q or P is the correct response, so
a wakeup is required. Once this replica is started, ZZ will be
able to determine which replicas were faulty so it can termi-
nate them and reduce the number of active replicas back to
only f + 1. To do this, ZZ employs the following rules:

Shutdown Rule: If any replicas can be convicted as
faulty, shut down f replicas starting with all convictably
faulty replicas, and followed by additional replicas that were
just woken up if needed. If no replicas can be convicted, de-
lay the shutdown procedure until all replicas produce a stable
checkpoint. Then shut down any f of the original replicas.

Note that in most cases a blocking fault will allow ZZ to
convict at least one faulty replica causing an immediate shut-
down; however, in certain cases where multiple faulty execu-
tion and agreemnent nodes collude, it may not be possible to
determine which nodes are faulty. ZZ prefers to shut down
replicas immediately after a wakeup because this prevents
malicious nodes from reducing ZZ’s performance benefits
that rely on running only f + 1 active replicas in the normal
case. We define how ZZ is able to convict faulty replicas
in the appendix, and describe how these rules ensure ZZ’s
safety and liveness properties in Section 4.3.4.

4.3.3 Overall Replication Cost
The expected replication cost of ZZ varies from f + 1 to
2f + 1 depending on the probability of replicas being faulty
p, and the likelihood of false timeouts, Π1.

THEOREM 3. The expected replication cost of ZZ is less
than (1+r)f+1, where r = 1−(1−p)f+1+(1−p)f+1Π1.

These two factors influence the replication cost because
additional nodes are started only if 1) a replica is truly faulty
(which happens with probability 1 − (1 − p)f+1), or 2)
there are no faults, but a correct slow replica causes a false
timeout (which happens with probability (1− p)f+1Π1). In
either case, the replication cost is increased by f , resulting
in the theorem. The value of p can be reduced by proactive
recovery, and Π1 is dependent on the value of K. Adjusting
K results in a tradeoff between the replication cost and
the response time inflation bound. Note that in practice the
replication cost may be even lower than this because ZZ will
quickly shutdown nodes after the fault has been resolved.

4.3.4 Safety and Liveness Properties
We state the safety and liveness properties ensured by ZZ
and outline the proofs.

Safety: ZZ ensures the safety property that if a correct
client obtains either a response certificate or an affirmation
certificate for a response 〈REPLY, t, c, j, R〉j , then (1) the
client issued a request 〈REQUEST, o, t, c〉c earlier; (2) all cor-
rect replicas agree on the sequence number n of that request
and on the order of all requests with sequence numbers in
[1, n]; (3) the value of the reply R is the reply that a single
correct replica would have produced.

The first claim follows from the fact that the agreement
cluster generates valid commit certificates only for valid
client requests and the second follows from the safety of
the agreement protocol that ensures that no two requests are
assigned the same sequence number [Castro 2002]. To show
the third claim, we must prove that if a client receives a
reply in ZZ, that the reply must be the one produced by a
correct execution replica. We consider two cases, depending
on whether a wakeup is required to process request n. If
a wakeup is required, we must show that after the fault is
resolved, the system produces equivalent behavior as if no
wakeup had been needed.

In the first scenario a client receives either f+1 matching
execution reports or a single execution report that matches
g + 1 reply affirmations from the agreement cluster without
requiring wakeups. The client is assured that reply R is
the correct response because matching responses must have
been produced by f + 1 different execution nodes; since at
least one of those nodes is correct, the reply must be correct.

In the second case a client does not immediately receive
matching execution reports or reply affirmations. We show
that the client will retransmit its requests, and correct agree-
ment replicas will wakeup an additional f execution replicas
using the following Lemma in the appendix:

Lemma 1: A client will receive an affirmation certificate
unless a mismatch is blocking.

This lemma allows us to guarantee that if clients are
not able to directly obtain an affirmation certificate, then a



blocking mismatch must have occurred, which in turn will
cause an additional f replicas to be started.

The new replicas will be able to obtain a correct snapshot
since that only requires a single correct execution replica
with application state. The new replicas will now be equiva-
lent to any non-faulty replicas at the start of the last check-
point epoch, and will correctly replay any requests up to n.
Of the 2f + 1 replicas now active, at most f can be faulty,
leaving f + 1 responses made by correct replicas. These re-
sponses must be identical and will be used to produce the
execution report needed by the client for a valid response.

This guarantees that after a wakeup the system behavior
is equivalent to that of a correct replica. However, we still
must show that once f replicas are shutdown that the sys-
tem will continue to function properly even though newly
awoken replicas may not yet have the full application state.
In order to maintain the safety property, at least one of the
“old” replicas with full state must remain active and not be
shutdown. We ensure this with the following lemma proved
in the appendix:

Lemma 2: If a mismatch is blocking, then (a) at least one
faulty replica can be shutdown and (b) the system will be
able to make a stable checkpoint.

If the blocking mismatch results in at least one con-
victably faulty replica, then ZZ will shut down that node and
up to f new replicas. This direclty satisfies (a), and part (b)
is guaranteed because this procedure will leave at least one
correct original node active that will be able to provide the
full application state and create a stable checkpoint.

If no nodes can be convicted as faulty, then ZZ will not
shut down any nodes until a new stable checkpoint is created,
fulfilling requirement (b). Once the checkpoint is made, ZZ
will shut down f of the original replicas; since unconvictable
faults can only occur if more than one node is faulty, this will
eliminate at least one faulty node.

At this point, ZZ has ensured that a correct response
has been returned to the client and that at least one active
execution replica contains the full application state. This is
equivalent to a correctly operating system, ensuring ZZ’s
safety properties.

Liveness: ZZ ensures the liveness property that if a cor-
rect client sends a requestRwith a timestamp exceeding pre-
vious requests and repeatedly retransmits the request, then it
will eventually receive a response certificate or an affirma-
tion certificate for R. We need eventual synchrony to show
this liveness property. If the client repeatedly retransmits
R, then the agreement cluster will eventually commit a se-
quence number toR. A correct execution replica will receive
a commit certificate, i.e., messages from at least g+1 agree-
ment replicas assigning a common sequence number n to R,
by the following property of the agreement protocol: Any re-
quest that commits locally at a correct agreement replica will
eventually commit locally at, at least, g + 1 correct replicas.
These properties are guaranteed by the agreement protocol
used by ZZ [Castro 2002].

Agreement 
Cluster Execution 

Replica

file 1
(1) 

mem
file 2

...
file n

Mem State

(2) 
hash

ZFS

file 3

(3) 
snapshot

(4) 
file hashes

Figure 4. For each checkpoint an execution replica (1) sends any
modified memory state, (2) creates hashes for any modified disk
files, (3) creates a ZFS snapshot, and (4) returns the list of hashes
to agreement nodes.

The existence of at least one correct execution replica en-
sures that the client gets at least one valid (but yet uncerti-
fied) response for R. The agreement cluster in ZZ ensures
that it either obtains an execution certificate for R or wakes
up the full 2f+1 execution replicas. In either case, the agree-
ment cluster will eventually obtain an execution certificate,
ensuring that the client eventually obtains an affirmation cer-
tificate for R.

Window of Vulnerability: ZZ’s current implementation
assumes a window of vulnerability equal to the time needed
to detect a fault, wakeup additional replicas, and finish the
state transfer so that at least one new replica can create a
stable checkpoint. Since at least one faulty replica is detected
and eliminated after each failure the system periodically
“refreshes” itself. However, since there might only be one
correct replica with the full application state, this replica
cannot become faulty until it finishes transferring the full
state to another replica. This is a similar requirement to
other BFT-SMR systems which generally rely on proactive
recovery (where a replica must be restarted and recover
the full application state) in order to reduce the window of
vulnerability from infinity.

5. ZZ Implementation
We implemented ZZ by enhancing the 2007 version of
BASE [Rodrigues 2001] so as to 1) use virtual machines to
run replicas, 2) incorporate ZZ’s checkpointing, fault detec-
tion, rapid recovery and fault-mode execution mechanisms,
and 3) use file system snapshots to assist checkpointing.

5.1 Replica Control Daemon
We have implemented a ZZ replica control daemon that runs
on each physical machine and is responsible for managing
replicas after faults occur. The control daemon, which runs
in Xen’s Domain-0, uses the certificate scheme described in
Section 4.2.2 to ensure that it only starts or stops replicas
when enough non-faulty replicas agree that it should do so.

Inactive replicas are maintained either in a paused state,
where they have no CPU cost but incur a small memory
overhead on the system, or hibernated to disk, which utilizes
no resources other than disk space. To optimize the wakeup
latency of replicas hibernating on disk, ZZ uses a paged-
out restore technique that exploits the fact that hibernating
replicas initially have no useful application state in memory,
and thus can be created with a bare minimum allocation
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Figure 5: Experimental setup for a basic ZZ BFT service.

of 128MB of RAM (which reduces their disk footprint and
load times). After being restored, their memory allocation
is increased to the desired level. Although the VM will
immediately have access to its expanded memory allocation,
there may be an application dependent period of reduced
performance if data needs to be paged in.

5.2 Exploiting File System Snapshots
Checkpointing in ZZ relies on the existing mechanisms in
the BASE library to save the protocol state of the agreement
nodes and any memory state used by the application on the
execution nodes. In addition, ZZ supports using the snap-
shot mechanism provided by modern journaled file systems
[ZFS 2004] to simplify checkpointing disk state. Creating
disk snapshots is efficient because copy-on-write techniques
prevent the need for duplicate disk blocks to be created, and
the snapshot overhead is independent of the disk state of the
application. ZZ uses ZFS for snapshot support, and works
with both the native Solaris and user-space Linux ZFS im-
plementations.

ZZ includes meta-information about the disk state in the
checkpoint so that the recovery nodes can validate the disk
snapshots created by other execution nodes. To do so, exe-
cution replicas create a cryptographic hash for each file in
the disk snapshot and send it to the agreement cluster as part
of the checkpoint certificate as shown in Figure 4. Hashes
are computed only for those files that have been modified
since the previous epoch; hashes from the previous epoch are
reused for unmodified files to save computation overheads.

Tracking Disk State Changes: The BASE library re-
quires all state, either objects in memory or files on disk, to
be registered with the library. In ZZ we have simplified the
tracking of disk state so that it can be handled transparently
without modifications to the application. We define func-
tions bft fopen() and bft fwrite() which replace the ordinary
fopen() and fwrite() calls in an application. The bft fwrite()
function invokes the modify() call of the BASE library which
must be issued whenever a state object is being edited. This
ensures that any files which are modified during an epoch
will be rehashed during checkpoint creation.

For the initial execution replicas, the bft fopen() call is
identical to fopen(). However, for the additional replicas
which are spawned after a fault, the bft fopen call is used
to retrieve a file from the disk snapshots and copy it to the
replica’s own disk on demand. When a recovering replica
first tries to open a file, it calls bft fopen(foo), but the replica

Graceful performance After failure
h1 h2 h3 h4 h1 h2 h3

BASE 1234 1234 1234 1234 1234 1234 1234
SEPAgree 1234 1234 1234 1234 1234 1234 1234
SEPExec 134 124 123 234 134 124 123
ZZAgree 1234 1234 1234 1234 1234 1234 1234
ZZExec 12 12 34 34 123 124 34
ZZSleep 3 4 1 2 1

Table 2. Placement of the 4 web servers’ virtual machines (denoted
1 to 4) on the 4 data center hosts (h1 to h4) under graceful perfor-
mance and on the 3 remaining hosts after h4 failure.

will not yet have a local copy of the file. The recovery replica
fetches a copy of the file from any replica and verifies it
against the hash contained in the most recent checkpoint. If
the hashes do not match, the recovery replica requests the
file from a different replica, until a matching copy is found
and copied to its own disk.

6. Experimental Evaluation
6.1 Experiment Setup
Our experimental data-center setup uses a cluster of 2.12
GHz 64-bit dual-core Dell servers, each with 4GB RAM.
Each machine runs a Xen v3.1 hypervisor and Xen virtual
machines. Both domain-0 (the controller domain in Xen) as
well as the individual VMs run the CentOS 5.1 Linux distri-
bution with the 2.6.18 Linux kernel and the user space ZFS
filesystem. All machines are interconnected over gigabit eth-
ernet. Figure 5 shows the setup for agreement and execution
replicas of a generic BFT app for g = f = 1; multiple such
applications are assumed to be run in a BFT data center.

6.1.1 Throughput
Our experiments involve three fault-tolerant server applica-
tions: a Web Server, an NFS server, and a toy client-server
microbenchmark.

Fault-tolerant Web Server: We have implemented a
BFT-aware HTTP 1.0 Web server that mimics a dynamic
web site with server side scripting. The request execution
time is configurable to simulate more complex request pro-
cessing. We generate web workloads using httperf clients
which contact a local BFT web proxy that submits the re-
quests to the agreement nodes.

Fault-tolerant NFS: BASE provides an NFS client relay
and a BFT wrapper for the standard NFS server. We have
extended this to support ZZ’s on demand state transfer which
allows a recovery replica to obtain file system state from ZFS
snapshots as it processes each request.

Client-Server Microbenchmark: We utilize the simple
client-server application from the BASE library to measure
ZZ’s performance for null requests and to study its recovery
costs under different application state scenarios.

Our experiments compare three systems: ZZ, BASE, and
Separated (SEP). BASE is the standard BFT library de-
scribed in [Rodrigues 2001]. SEP is our extension of BASE
which separates the agreement and execution replicas, and
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Figure 6. (a-b) When resources are constrained, ZZ significantly increases system throughput by using fewer replicas. (c) Under simultaneous
failures of several applications, ZZ quickly recovers and still maintains good throughput.

requires 3f + 1 agreement and 2f + 1 execution replicas
similar to [Yin 2003]. ZZ also requires 3f + 1 agreement
replicas, but extends SEP to use only f + 1 active execution
replicas, with an additional f sleeping replicas. While more
recent agreement protocols provide higher performance than
BASE, our evaluation focuses on cases where execution is at
least an order of magnitude more expensive than agreement;
we believe our conclusions are consistent with what would
be found with more optimized agreement protocols.

6.2 Graceful Performance
We study the graceful performance of ZZ by emulating a
shared hosting environment running four independent web
apps on four machines. Table 2 shows the placement of
agreement and execution replicas on the four hosts. As the
agreement and execution clusters can independently handle
faults, each host can have at most one replica of each type
per application.

We first analyze the impact of request execution cost un-
der ZZ, SEP, and BASE, which require f + 1, 2f + 1, and
3f + 1 execution replicas per web server respectively. Fig-
ure 6(a) compares the throughput of each system as the exe-
cution cost per web request is adjusted. When execution cost
averages 100 µs, BASE performs the best since the agree-
ment overhead dominates the cost of processing each request
and our implementation of separation incurs additional cost
for the agreement replicas. However, for execution costs ex-
ceeding 0.75 ms, the execution replicas become the system
bottleneck. As shown in Figure 6(b), ZZ begins to outper-
form BASE at this point, and performs increasingly better
compared to both BASE and SEP as execution cost rises.
SEP surpasses BASE for request costs over 2ms, but cannot
obtain the throughput of ZZ since it requires 2f + 1 replicas
instead of only f+1. ZZ provides as much as a 66% increase
in application throughput relative to BASE for requests with
large execution costs.

6.2.1 Latency
We further characterize the performance of ZZ in graceful
operation by examining the relation between throughput and
response time for different request types. Figure 7 shows the
relation between throughput and response time for increas-
ingly CPU intensive requests. For null requests or very low
loads, Figure 7(a), BASE beats SEP and ZZ because it has

5 10 15 20 40 50
State Size (MB)

0.1

1

10

100

Ti
m

e 
(s

ec
)

Full Transfer
On Demand

(a) Loading Checkpoints

0

20

40

60

80

Re
pl

ay
 T

im
e 

(m
se

c/
re

q) Full Transfer
On Demand

(b) Request Replay

Figure 8. (a) The cost of full state transfer increases with state
size. (b) On Demand incurs overhead when replaying requests since
state objects must be verified.

less agreement overhead. At 1ms, ZZ’s use of fewer execu-
tion replicas enables it to increase the maximum throughput
by 25% over both SEP and BASE. When the execution cost
reaches 10ms, SEP outperforms BASE since it uses 2f + 1
instead of 3f + 1 replicas. ZZ provides a 50% improvement
over SEP, showing the benefit of further reducing to f + 1.

6.3 Simultaneous Failures
When several applications are multiplexed on a single phys-
ical host, a faulty node can impact all its running applica-
tions. In this experiment, we simulate a malicious hypervi-
sor on one of the four hosts that causes multiple applications
to experience faults simultaneously. Host h4 in Table 2 is set
as a faulty machine and is configured to cause faults on all
of its replicas 20 seconds into the experiment as shown in
Figure 6(c). For ZZ, the failure of h4 directly impacts web
servers 3 and 4 which have active execution replicas there.
The replica for server 2 is a sleeping replica, so its corruption
has no effect on the system. The failure also brings down one
agreement replica for each of the web servers, however they
are able to mask these failures since 2f+1 correct agreement
replicas remain on other nodes.

ZZ recognizes the corrupt execution replicas when it de-
tects disagreement on the request output of each service. It
responds by waking up the sleeping replicas on hosts h1 and
h2. After a short recovery period (further analyzed in the
next section), ZZ’s performance is similar to that of SEP
with three active execution replicas competing for resources
on h1 and h2. Even though h3 only has two active VMs and
uses less resources with ZZ, applications 3 and 4 have to
wait for responses from h1 and h2 to make progress. Both
ZZ and SEP maintain a higher throughput than BASE that
runs all applications on all hosts.
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Figure 7: For high execution costs, ZZ achieves both higher throughput and lower response times.
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Figure 9. (a-b) The worst case recovery time depends on the amount of state updated between the last checkpoint and the fault. (c) The
recovery period lasts for less than a second. At first, requests see higher latency since state must be fetched on-demand.

6.4 Recovery Cost
The following experiments study the cost of recovering
replicas in more detail using both microbenchmarks and our
fault tolerant NFS server. We study the recovery cost, which
we define as the delay from when the agreement cluster de-
tects a fault until the client receives the correct response.

6.4.1 NFS Recovery Costs
We investigate the NFS server recovery cost for a workload
that creates 200 files of equal size before encountering a
fault. We vary the size of the files to adjust the total state
maintained by the application, which also impacts the num-
ber of requests which need to be replayed after the fault.

ZZ uses an on-demand transfer scheme for delivering
application state to newly recovered replicas. Figure 8(a)
shows the time for processing the checkpoints when us-
ing full transfer or ZZ’s on-demand approach (note the log
scale). The full state transfer approach performs very poorly
since the BFT NFS wrapper must both retrieve the full con-
tents of each file and perform RPC calls to write out all of
the files to the actual NFS server. When transferring the full
checkpoint, recovery time increases exponentially and state
sizes greater than a mere 20 megabytes can take longer than
60 seconds, after which point NFS requests typically will
time out. In contrast, the on-demand approach has a constant
overhead with an average of 1.4 seconds. This emphasizes
the importance of using the on-demand transfer for realistic
applications where it is necessary to make some progress in
order to prevent application timeouts.

We report the average time per request replayed and the
standard deviation for each scheme in Figure 8(b). ZZ’s on
demand system experiences a higher replay cost due to the
added overhead of fetching and verifying state on-demand; it
also has a higher variance since the first access to a file incurs
more overhead than subsequent calls. While ZZ’s replay

time is larger, the total recovery time is much smaller when
using on-demand transfer.

6.4.2 Obtaining State On-Demand
This experiment uses a BFT client-server microbenchmark
which processes requests with negligible execution cost to
study the recovery cost after faults are caused in applications
with different state sizes.

In the best case, a fault occurs immediately after a check-
point and new replicas only need to load and resume from
the last save, taking a constant time of about 2s regard-
less of state size (Figure 9(a)). Otherwise, the cost of on-
demand recovery varies depending on the amount of appli-
cation state that was modified since the last checkpoint. The
“10% Dirty” line shows the recovery cost when 10% of the
application’s state needs to be fetched during replay. In that
case, ZZ’s recovery time varies from 5.2s to 7.1s for states
of 50 and 400MB, respectively. This remains much faster
than the Full Transfer technique which requires over 30s to
transfer and verify 400MB of state.

The tradeoff between amount of dirty state and recovery
speed is further studied in Figure 9(b). Even when 10% of
application state is modified between each checkpoint, on-
demand transfers speed up recovery by at least five times.
Only when more than 50% of state is dirty does it becomes
more expensive to replay than to perform a full transfer.
Fortunately, we have measured the additional cost of ZFS
checkpoints at 0.03s, making it practical to checkpoint every
few seconds, during which time most applications will only
modify a small fraction of their total application state.

Next we examine the impact of on-demand recovery on
throughput and latency. The client sends a series of requests
involving random accesses to 100kB state objects and a fault
is injected after 20.2s (Figure 9(c)). The faulty request ex-
periences a sub-second recovery period, after which the ap-
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Figure 10. Recovery time increases for larger f from message
overhead and increased ZFS operations.
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Figure 11. Throughput of ZZ and BASE with different batch sizes
for a 5ms request execution time.

plication can handle new requests. The mean request latency
prior to the fault is 5ms with very little variation. The latency
of requests after the fault has a bimodal distribution depend-
ing on whether the request accesses a file that has already
been fetched or one which needs to be fetched and verified.
The long requests, which include state verification and trans-
fer, take an average of 20ms. As the recovery replica rebuilds
its local state, the throughput rises since the proportion of
slow requests decreases. After 26s, the full application state
has been loaded by the recovery replica, and the throughput
prior to the fault is once again maintained.

6.4.3 Impact of Multiple Faults
We examine how ZZ’s graceful performance and recovery
time changes as we adjust f , the number of faults supported
by the system when null requests are used requiring no exe-
cution cost. Figure 10(a) shows that ZZ’s graceful mode per-
formance scales similarly to BASE as the number of faults
increases. This is expected because the number of crypto-
graphic and network operations rises similarly in each.

We next examine the recovery latency of the client-server
microbenchmark for up to three faults. We inject a fault to
f of the active execution replicas and measure the recovery
time for f new replicas to handle the faulty request. Figure
10(b) shows how the recovery time increases slightly due
to increased message passing and because each ZFS system
needs to export snapshots to a larger number of recovering
replicas. We believe the overhead can be attributed to our
use of the user-space ZFS code that is less optimized than
the Solaris kernel module implementation, and messaging
overhead which could be decreased with hardware multicast.

6.5 Trade-offs and Discussion
6.5.1 Agreement Protocol Performance
Various agreement protocol optimizations exist such as re-
quest batching, but these may have less effect when request

execution costs are non-trivial. While Figure 10(a) shows a
large benefit of batching for null requests, Figure 11 depicts
a similar experiment with a request execution time of 5ms.
We observe that batching improvements become insignifi-
cant with non-trivial execution costs. This demonstrates the
importance of reducing execution costs, not just agreement
overhead, for real applications.

6.5.2 Maintaining Spare VMs
In our previous experiments recovery VMs were kept in a
paused state which provides a very fast recovery but con-
sumes memory. Applications that have less stringent latency
requirements can keep their recovery VMs hibernated on
disk, removing the memory pressure on the system.

With a naive approach, maintaining VMs hibernated to
disk can increase recovery latency by a factor proportional to
their amount of RAM. This is because restoring a hibernated
VM involves loading the VM’s full memory contents from
disk. The table below shows how our paged-out restore tech-
nique reduces the startup time for a VM with a 2GB memory
allocation from over 40 seconds to less than 6 seconds.

Operation Time (sec)
Xen Restore (2GB image) 44.0
Paged-out Restore (128MB→2GB) 5.88
Unpause VM 0.29
ZFS Clone 0.60

ZZ utilizes ZFS to simplify checkpoint creation at low
cost. The ZFS clone operation is used during recovery to
make snapshots from the previous checkpoint available to
the recovery VMs. This can be done in parallel with initial-
izing the recovery VMs, and incurs only minimal latency.

6.5.3 Limitations & Potential for Optimization
ZZ obtains lower hardware costs during graceful perfor-
mance at the expense of increased delay when a fault occurs.
We believe this is a valuable trade-off, and that obtaining
state on demand will mitigate the recovery cost in many sce-
narios. However, there are some applications which contain
too large a state or modify it too often for this to be reason-
able. Recovering replicas in ZZ must obtain all the state ob-
jects relevant for replaying every request that occurred since
the last checkpoint. Thus the recovery cost directly depends
on the amount of state actively used during each checkpoint
period. If the request replay procedure involves reads to a
large number of state objects, then those objects will need to
be transferred and verified before recovery can finish. One
approach to reduce this cost is for ZZ’s sleeping replicas to
periodically wakeup and obtain the most recent application
state. This approach is used in SPARE to reduce the amount
of checkpoint data that must be obtained when recovering
an out of date replica [Distler 2011b]. This form of proac-
tive recovery can be easily employed by ZZ to prefetch state
objects that only change across long time scales.

In addition to obtaining the relevant state, the recover-
ing ZZ replicas must perform the computation required to



replay every request which involved a write since the last
checkpoint. This cost again will depend on the rate at which
checkpoints can be made and the execution cost of the write
requests. For example, processing the writes in the BFT NFS
application studied in Section 6.4.1 are relatively expensive,
taking about 30ms per request replayed. If more than a few
hundred such requests need to be processed, the recovery
time could grow into the tens of seconds. We believe this
cost could be reduced by having recovering replicas only re-
play a subset of the write requests which occurred since the
last checkpoint. For example, there may be multiple writes
to the same state object; only the most recent such request
needs to be replayed. This would reduce both the number of
requests that need to be replayed, and possibly the amount
of state that needs to be immediately obtained from the last
checkpoint. In fact, the replay process could be further opti-
mized by only replaying the missed requests that are “depen-
dencies” for processing the request which produced a fault
(or any subsequent requests)—e.g. only those requests that
modify a state object that is read by a later request.

7. Related Work
[Lamport 1982] introduced the problem of Byzantine agree-
ment. Lamport also introduced the state machine replication
approach [Lamport 1978] that relies on consensus to estab-
lish an order on requests. Consensus in the presence of asyn-
chrony and faults has seen almost three decades of research.
[Dwork 1988] established a lower bound of 3f + 1 replicas
for Byzantine agreement given partial synchrony, i.e., an un-
known but fixed upper bound on message delivery time. The
classic FLP [Fischer 1985] result showed that no agreement
protocol is guaranteed to terminate with even one (benignly)
faulty node in an asynchronous environment. Viewstamped
replication [Oki 1988] and Paxos [Lamport 1998] describe
an asynchronous state machine replication approach that is
safe despite crash failures.

Early BFT systems [Kihlstrom 1998, Reiter 1995] in-
curred a prohibitively high overhead and relied on failure
detectors to exclude faulty replicas. However, accurate fail-
ure detectors are not achievable under asynchrony, thus these
systems effectively relied on synchrony for safety. Castro
and Liskov’s PBFT [Castro 1999] introduced a BFT SMR-
based system that relied on synchrony only for liveness. The
view change protocol at the core of PBFT shares similarities
with viewstamped replication [Oki 1988] or Paxos [Lamport
1998] but incurs a replication cost of at least 3f+1 for safety.
PBFT showed that the latency and throughput overhead of
BFT can be low enough to be practical. The FARSITE sys-
tem [Adya 2002] reduces the replication cost of a BFT file-
system to f + 1; in comparison, ZZ has similar goals, but is
able to provide the same cost reduction for any application
which can be represented by a more general SMR system.
ZZ draws inspiration from Cheap Paxos [Lamport 2004],
which advocated the use of cheaper auxiliary nodes used
only to handle crash failures of main nodes. Our contribution

is extending the idea to Byzantine faults and demonstrating
its practicality through system design and implementation.

Virtualization has been used in several BFT systems re-
cently since it provides a clean way to isolate services. The
SPARE system also uses virtualized replicas to reduce the
cost of BFT execution to f + 1 replicas [Distler 2011b].
SPARE exploits virtualization to reduce the cost of proactive
recovery, allowing it to periodically wakeup passive replicas
so they can efficiently catch up to the latest application state.
ZZ amortizes recovery cost by obtaining only the necessary
state on demand, but its sleeping replicas do not proactively
obtain state like those in SPARE. Unlike ZZ, SPARE relies
on a trusted component to order requests and does not fully
explore the potential for response time inflation from mali-
cious replicas. The cost of BFT execution has also been at-
tacked in [Distler 2011a] where only f + 1 replicas process
each request when there are no faults. The idea of “reactive
recovery”, where faulty replicas are replaced after fault de-
tection, was used in [Sousa 2007], which employed virtual-
ization to provide isolation between different types of repli-
cas. In ZZ, reactive recovery is not an optional optimization,
but a requirement since in order to make progress it must
instantiate new replicas after faults are detected.

The Remus system uses virtualization to provide black-
box crash fault tolerance using a standby VM replica [Cully
2008]. ZZ seeks to provide stronger Byzantine fault toler-
ance guarantees at a similar replication cost, although ZZ,
like all BFT systems, requires application support for the
BFT protocol. Terra is a virtual machine platform for trusted
computing that employs a trusted hypervisor [Garfinkel
2003]; ZZ allows hypervisors to be Byzantine faulty.

8. Conclusions
In this paper, we presented ZZ , a new execution approach
that can be interfaced with existing BFT-SMR agreement
protocols to reduce the replication cost from 2f+1 to practi-
cally f+1. Our key insight was to use f+1 execution repli-
cas in the normal case and to activate additional VM repli-
cas only upon failures. We implemented ZZ using the BASE
library and the Xen virtual machine and evaluated it on a
prototype data center that emulates a shared hosting envi-
ronment. The key results from our evaluation are as follows.
(1) In a prototype data center with four BFT web servers,
ZZ lowers response times and improves throughput by up to
66% and 33% in the fault-free case, when compared to sys-
tems using 3f+1 and 2f+1 replicas, respectively. (2) In the
presence of multiple application failures, after a short recov-
ery period, ZZ performs as well or better than 2f + 1 repli-
cation and still outperforms BASE’s 3f + 1 replication. (3)
The use of paused virtual machine replicas and on-demand
state fetching allows ZZ to achieve sub-second recovery
times. (4) We find that batching in the agreement nodes,
which significantly improves the performance of null exe-
cution requests, yields no perceptible improvements for re-
alistic applications with non-trivial request execution costs.



Overall our results demonstrate that in shared data centers
hosting multiple applications with substantial request execu-
tion costs, ZZ can be a practical and cost-effective approach
for providing BFT.
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9. Appendix
We defer proofs for Theorems 1 and 3 to a technical re-
port [Wood 2011], and prove Theorem 2 here since it is the
basis for ZZ’s safety and liveness properties.

THEOREM 2. If a wakeup occurs, ZZ will be able to termi-
nate at least one faulty replica.

To ensure this theorem, ZZ uses the following rule:
Wakeup Rule: A wakeup happens if and only if a mis-

match report is “blocking”.
A mismatch occurs when an agreement replica receives

execution replies which are not identical. Suppose that for a
particular request there are g + c agreement replicas which
experience a mismatch. Consider the mismatch matrix of
size (f + 1) ∗ (g + c) where entry i, j corresponds to the
reply by execution replica Ei as reported by agreement node
Aj . Let the execution mismatch of a row be defined as the
smallest number of entries that need to be changed in order
to make all g+c entries in that row identical. Let the smallest
such execution mismatch across all f + 1 rows be m. The
mismatch is considered blocking if m < c.

To understand the difference, consider two examples
where the client receives conflicting responses P and Q,
and f = g = 1,

Full Matrix Mismatch Matrix
A1A2A3A4 A3A4

E1 : Q Q P Q E1 : P Q c = 1
E2 : Q Q Q P E2 : Q P m = 1

In this scenario, the mismatch matrix has size g + c =
2. Since g = 1, c = 1. Both rows require one entry to
be changed in order to create a match, so the minimum
mismatch is m = 1. Since m = c, this is not a blocking
fault. The client will be able to receive a reply affirmation
that Q is correct from A1 and A2. Note that if an additional
node were woken up, it would not be possible to tell which
execution node was faulty since it is impossible to tell if A3

or A4 is also faulty.
Full Matrix Mismatch Matrix

A1A2A3A4 A2A3

E1 : Q Q Q P E1 : Q Q c = 1
E2 : Q P P P E2 : P P m = 0

The second scenario illustrates a blocking mismatch.
In this case, the rows in the mismatch matrix require no
changes, thusm = 0. Sincem < c we have a blocking fault.
This makes sense because there is no way to tell whether
Q or P is the correct response, so a wakeup is required. To
ensure Theorem 2, we also must guarantee:

Lemma 1: A client will receive an affirmation certificate
unless a mismatch is blocking.

Since g + c agreement replicas report a mismatch, the
number of replicas that have matching replies is 2g + 1− c.
For a client to get an affirmation certificate, we must show
that there are at least g + 1 correct agreement replicas with
matching replies.

As all rows have an execution mismatch of at least m, at
least m of the agreement replicas out of the g + c reporting
a mismatch must be faulty. To see why this is true, consider
that some row in the matrix must correspond to a correct
execution replica. If there are no faulty agreement replicas,
then all entries in that row should be identical. However,
recall that m is the minimum number of entries in any
row which would need to be changed to make the whole
row identical. This means that even the row for the correct
execution replica requires at least m entries to be changed to
match. Thus at least m agreement replicas in the mismatch
matrix must be lying about the correct replica’s response.

Since m agreement replicas that are part of the mismatch
matrix are faulty, that means that at most g − m of the
remaining 2g + 1 − c replicas can be faulty. Therefore,
2g+1−c−(g−m) = g+1−c+m are correct. If the fault is
categorized as non-blocking, thenm >= c, giving us at least
g+1 correct agreement replicas with matching replies. These
nodes will be able to provide an execution affirmation to the
client without requiring a wakeup, proving the lemma.

Lemma 2: If a mismatch is blocking, then (a) at least one
faulty replica can be shutdown and (b) the system will still
be able to make a stable checkpoint.

The lemma is based on the shutdown rule defined in Sec-
tion 4.3.2, and depends on whether any replicas can be con-
victed as faulty. To convict a faulty execution replica we
need at least g + 1 agreement replicas to concur that the
execution node produced an incorrect answer; such an ex-
ecution replica is convictably faulty. Consider the complete
(2f + 1) ∗ (3g + 1) response matrix obtained by the replica
control daemon after all recovery replicas have produced a
reply to the faulty request. Since at most g agreement repli-
cas (columns) and f execution replicas (rows) can be faulty,
there must be an (f+1)∗(2g+1) sub-matrix which contains
identical, correct responses. The other entries in the matrix
may contain some wrong response. The replica control dae-
mon determines if an execution replica is faulty by looking at
its row and checking if there are at least g+1 entries with an
incorrect response. Such an execution replica must be faulty
because g+1 agreement nodes report it gave an invalid reply,
and at least one of those nodes must be correct.

If at least one replica can be convicted as faulty, then the
shutdown rule trivially proves part (a) of the lemma. Part
(b) must also hold because only new replicas or convictably
faulty nodes will be terminated, leaving at least one old
replica able to create a stable checkpoint.

If no replicas can be convicted due to collusion between
the agreement and execution clusters, then ZZ will not shut
down any nodes until the f+1 correct execution replicas cre-
ate a stable checkpoint, fulfilling part (b). After the check-
point is made, f of the original replicas will be shutdown;
this must include at least one faulty replica since multiple
faulty replicas most collude to prevent conviction, satisfying
part (a). This guarantees the lemma and proves Theorem 2.


